193. The Antisymmetric Stretching Band of Carbodi-imides.

By G. D. Meakins and R. J. Moss.

The antisymmetric stretching vibrations of carbodi-imides give rise to exceptionally strong bands in the infrared spectrum. The intensities of these absorptions have been evaluated by several methods, and the relative merits of these methods are discussed.

The infrared spectra of carbodi-imides $\mathrm{R} \cdot \mathrm{N}: \mathrm{C}: \mathrm{N} \cdot \mathrm{R}$ have received little attention beyond the brief statement by Khorana ${ }^{3}$ that they have absorption bands near $2150 \mathrm{~cm} .^{-1}$. A systematic investigation of several carbodi-imides, described here, showed that these compounds have characteristic peaks between 2150 and $2100 \mathrm{~cm} .^{-1}$, a range which is reasonable by analogy with similar absorptions of many other groups containing a unit $\mathrm{X}=\mathrm{Y}=\mathrm{Z}$ with two double bonds joined to a common atom. ${ }^{2}$

Moreover, the carbodi-imide bands are extremely strong in a barren region of the spectrum, and thus provide a good opportunity for precise intensity measurements. The main purpose of the present work is therefore the use of the carbodi-imide spectra as a basis for comparing several methods of evaluating infrared intensities.

Experimental

Preparations.-Di-sec.-butylcarbodi-imide. Yellow mercuric oxide (25 g .) was added to a suspension of finely powdered $N N^{\prime}$-di-sec.-butylthiourea (9 g. ; m. p. $102-103^{\circ}$) in a mixture of dry carbon disulphide ($150 \mathrm{c} . \mathrm{c}$.), magnesium sulphate (30 g .), and sulphur (0.2 g .). The mixture was shaken for 2 hr ., then filtered, and the insoluble material washed with carbon disulphide. Removal of solvent in vacuo from the combined filtrate and washings, and distillation of the residue afforded di-sec.-butylcarbodi-imide (6 g .), b. p. $68-68.5^{\circ} / 10 \mathrm{~mm}$. (Found : C, 71.2; H, $11.75 . \quad \mathrm{C}_{9} \mathrm{H}_{18} \mathrm{~N}_{2}$ requires $\mathrm{C}, 70.8 ; \mathrm{H}, 11.7 \%$).

Di-p-methoxyphenylcarbodi-imide. Yellow mercuric oxide ($\mathbf{1 6} \mathrm{g}$.) was added in portions to a refluxing mixture of $N N^{\prime}$-di- p-methoxyphenylthiourea (10 g. ; m. p. 197-198 $)$, acetone
${ }^{1}$ Khorana, Chem. Rev., 1953, 53, 145.
${ }^{2}$ See, inter al., Herzberg, Discuss. Faraday Soc., 1950, 9, 92; Davison, J., 1953, 3712.
L L
($400 \mathrm{c} . \mathrm{c}$.), and sulphur (0.2 g .). After a further 20 minutes' boiling, the precipitate (largely mercuric sulphide) was collected and washed with acetone ($\mathbf{1 0 0}$ c.c.). The bulk of the combined filtrates was reduced to 50 c.c., light petroleum (50 c.c., b. p. $60-80^{\circ}$) was added, and the mixture was cooled in ice. After removal of insoluble material the filtrate was evaporated to dryness, and the residue was twice crystallised from light petroleum to give di-p-methoxy-phenylcarbodi-imide (6.4 g .), m. p. 49- 50° (Found: C, $71 \cdot 0 ; \mathrm{H}, 5.5 . \quad \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~N}_{2}$ requires C, 70.9 ; H, $5 \cdot 5 \%$).

The remaining compounds were prepared by published methods (constants and references are given in the Table).

Spectroscopy. The spectra were recorded over the $2300-2000 \mathrm{~cm} .^{-1}$ region on a PerkinElmer double-beam spectrometer (sodium chloride prism) operating with source current 0.35 amp ., slit programme 927 , gain 7 , response $2 / 2$, scanning speed $15 \mathrm{~cm} . .^{-1} / \mathrm{min}$., linear frequency scale $12.5 \mathrm{~cm} .^{-1} / \mathrm{cm}$. Each compound was examined in carbon tetrachloride solution in a 1 mm . cell at five concentrations. Errors in the concentration figures were minimised in the usual way (preparation of large volumes of solution, use of weighed amounts of solvent, precautions against evaporation losses).

Calculation of Intensities.-It is generally recognised that the area under an absorption band affords a more accurate measure of intensity than the apparent extinction coefficient. An authoritative treatment of this subject was given by Ramsay ${ }^{3}$ in 1952, but only a few applications ${ }^{4}$ of his methods have appeared since then. Four methods of treating area data were used with the carbodi-imide spectra, the procedure and terminology adopted being similar to Ramsay's.

The following definitions apply :

$$
B \text { (apparent integrated absorption intensity) }=\frac{1}{c l} \int \ln \left(\frac{T_{0}}{T}\right)_{\nu} \cdot d \nu
$$

where $c=$ concentration of the solution in moles $/ 1 ., l=$ path-length in $\mathrm{cm} ., T_{0}$ and $T=$ apparent intensities of the incident and transmitted radiation when the spectrophotometer is set at frequency v.

$$
A \text { (true integrated absorption intensity) }=\frac{1}{c l} \int \ln \left(\frac{I_{0}}{I}\right)_{\nu} \cdot \mathrm{d} \nu
$$

where I_{0} and I refer to monochromatic radiation.

$$
\varepsilon^{a}(\text { apparent molecular extinction coefficient })=\frac{1}{c l} \log _{10}\left(\frac{T_{0}}{T}\right)_{V_{m}}
$$

where $\nu_{m}=$ frequency of maximal absorption.

$$
\text { Area } D=\int_{v_{m}-40}^{\nu_{m}+40} \ln \left(\frac{T_{0}}{T}\right)_{v} \cdot \mathrm{~d} v \quad \text { Area } E=\int_{v_{m}-40}^{T_{0}}\left(\frac{T_{0}-T}{T_{0}}\right)_{v} \cdot \mathrm{~d} v
$$

$\Delta \nu_{\frac{1}{2}}{ }^{a}$ and $\Delta v_{d}{ }^{2}=$ apparent and true half-intensity band widths.
Two examples are shown to illustrate the detailed working by which the methods were applied.

Dibenzylcarbodi-imide (a).-Background absorption (solvent in both beams) $=2 \%$. Effective slit width of spectrometer at $v_{m}\left(2140 \mathrm{~cm} .^{-1}\right)=12.7 \mathrm{~cm} .^{-1}$

Method 1 (extrapolation). The five experimental curves of frequency against percentage of absorption were replotted to give frequency (from 2180 to $2100 \mathrm{~cm} .^{-1}$) against $\ln \left(T_{0} / T\right)$, and the areas under the curves (areas D) were measured with a planimeter. Wing corrections (obtained from Table V of Ramsay's paper ${ }^{3}$) were applied to the D values, and from the corrected figures values of B (apparent integrated absorption intensity) were calculated. A graph of B against $\ln \left(T_{0} / T\right) v_{m}$ was plotted, and the best straight line was drawn such that the slope was $A \theta$ and the intercept (on the B axis) was A. (A is the true integrated absorption intensity : θ was found from Ramsay's Table IV. ${ }^{3}$)

Method 2 (proportional correction). The wing corrections were taken as 10% of the D values.

[^0]B values were calculated, and these were increased by 2% to give figures for A. The details were :

Disopropylcarbodi-imide (b).-Background absorption $=1 \%$.
Method 3 (variable correction). The values of $\ln \left(T_{0} / T\right) \nu_{m}$ were corrected (by using Ramsay's Table I^{3}) to give $\ln \left(I_{0} / I\right) \mathrm{v}_{m}$ figures and hence ε^{l} values. Areas E were found by measuring the areas under the experimental curves of frequency (from 2168 to $2088 \mathrm{~cm} .^{-1}$) against percentage of absorption. The E values were corrected for wing errors (Ramsay's Table VII). Figures of A were calculated from $A=(\phi \times$ corrected $E / c l)(\phi$ values from Ramsay's Table VI).

Method 4 (no correction). The intensity values were taken as $D / c l$. Details (units as above) were :

Discussion

The frequencies of maximal absorption for a series of carbodi-imides are shown in the Table. The single strong band between 2140 and $2125 \mathrm{~cm} .^{-1}$ in each of the compounds $(a-f)$ is clearly due to the antisymmetric stretching of the $-\mathrm{N}=\mathrm{C}=\mathrm{N}-$ system. Compounds (g), (h), and (i), which contain an aromatic group directly attached to the di-imide grouping, show two bands. These may arise by resonance coupling between the NCN fundamental and one of the aromatic overtones present in this region, the coupling enhancing the intensity of the normally weak aromatic band. Alternatively the effect may be due to conjugation of the di-imide system. No conjugated aliphatic compound was available for the present study, and a final choice between these and other possible explanations cannot be made.

The remainder of the Table shows apparent extinction coefficients and area data for the bands. The ε^{a} values and the A figures of methods 2,3 , and 4 are followed by error values. Since the object of any method of computation is to produce a constant value for the intensity of a band, the error values are expressed in a way that brings out the maximal deviation from the average values.

It is apparent that the di-imide bands are exceptionally strong, on both an extinction coefficient and an area basis (cf. carbonyl bands, which are normally regarded as very
strong, having ε^{a} and A values of about 600 and $2 \cdot 5$ units respectively ${ }^{4}$). The errors in ε^{a} values depend markedly on the range in maximal absorption used. For example, in (e) the

Infrared frequencies for carbodi-imides, and average values (and errors) of intensities.

Abstract

Units of intensities are as in detailed examples. Error figures, given in parentheses after average values, are maximum single errors, i.e., the highest values of the difference between single values from 5 runs and the average, expressed as a percentage of the average value.

A values

	Carbodi-imide	$\left(\begin{array}{c} \nu_{m} \\ \left(\mathrm{c}^{-1}\right) \end{array}\right.$	$\varepsilon^{\boldsymbol{a}}$	1, Extrapoln. 2, Prop. corrn. 3, Variable corrn. 4, No corrn.			
(a)	Dibenzyl ${ }^{5}$ (b. p.	2140	1340	11.35	10.5	10.9	9.37
	144-145 $/ 0 \cdot 3 \mathrm{~mm}$.)		(5.2)		(1.9)10.2	(1.8)	(2-2)
(b)	Diisopropyl ${ }^{\circ}$ (b. p.	2128	1580	Imposs.		$10 \cdot 8$	$9 \cdot 06$
	44-45 $/ 13 \mathrm{~mm}$.)		(5.7)		$(5 \cdot 4)$10.4	(4.8)	(5-1)
(c)	Di-sec.-butyl ${ }^{7}$.........	2128	1540	$11 \cdot 1$		11.3	$9 \cdot 3$$(5 \cdot 5)$
			(8.4)		$(5 \cdot 8)$	(1.8)	
(d) Di-n-butyl ${ }^{6}$ (b. p. $88-89^{\circ} / 12 \mathrm{~mm}$.)		2138	1560	Imposs.	$9 \cdot 13$	10.9	$8 \cdot 14$
			(8.3)		(6.9)	(4.6)	(8.3)
(e) Diethyl ${ }^{\circ}$ (b. p. 92$93^{\circ} / 260 \mathrm{~mm}$.)		2138	1360	Imposs.	$8 \cdot 6$	$10 \cdot 4$	$7 \cdot 7$
			(11)		$(6 \cdot 8)$	(4.3)	(8.0)
(f) Dicyclohexyl ${ }^{8}$ (b. p. $155-156^{\circ} / 10 \mathrm{~mm}$.)		2130 *	1430	-	8.75	10.6	$7 \cdot 8$
			$(-)$		(-)	(-)	(-)
(g) Di-p-methoxyphenyl ${ }^{\text {? }}$		2142	$\begin{aligned} & 1380 \\ & (2.9) \end{aligned}$	Not studied	$\begin{aligned} & 16.0 \\ & (1.9) \end{aligned}$	Not applicable	$\begin{aligned} & 14 \cdot 3 \\ & (2 \cdot 1) \end{aligned}$
		2120	$\begin{aligned} & 1180 \\ & (3 \cdot 4) \end{aligned}$				
(h)	$\begin{aligned} & \text { Di- } \alpha \text {-naphthyl }{ }^{9} \text { (m.p. } \\ & \left.90-91^{\circ}\right) \end{aligned}$	2152	$\begin{aligned} & 1680 \\ & (4.8) \end{aligned}$	Not studied	$\begin{aligned} & 24 \cdot 1 \\ & (2 \cdot 5) \end{aligned}$	Not applicable	$\begin{aligned} & 21 \cdot 4 \\ & (2 \cdot 3) \end{aligned}$
		2100	$\begin{array}{r} 400 \\ (5 \cdot 5) \end{array}$				
	$\underset{\left.53-54^{\circ}\right)^{10}}{\text { Di-p-toly }}(\mathrm{m} . \mathrm{p} .$	2145	$\begin{aligned} & 1440 \\ & (3.5) \end{aligned}$	Not studied	$\begin{array}{r} 19 \cdot 0 \\ (4 \cdot 2) \end{array}$	Not applicable	$\begin{aligned} & 17 \cdot 0 \\ & (4 \cdot 1) \end{aligned}$
	53-54).	2120	$\begin{aligned} & (3.5) \\ & 1560 \end{aligned}$				

* Three runs only.

Refs.: 5, Zetsche and Fredrich, Ber., 1940, 73, 1114. 6, Lecher, Parker, and Long, U.S.P. 2,479,498/1949; Chem. Abs., 1950, 44, 4027. 7, This paper. 8, Schmidt, Hitzler, and Lahde, Ber. 1938, 71, 1933. 9, Rotter and Schandy, Monatsh., 1931, 58, 245. 10, Zetsche and Nerger, Ber., 1940, 73, 467.
range $38-92 \%$ leads to a high error, whereas in (h), with a small error, the range was $40-70 \%$. Method 1 (extrapolation) is the least satisfactory of the area methods. For its application a plot of B against $\ln \left(T_{0} / T\right) v_{m}$ must be a reasonably straight line, a condition which did not apply in three of the five cases studied. Even with (a) and (c) the values obtained for A are too high, and this tendency may be inherent in the method when large B values are involved.

The other area methods are more accurate than extinction-coefficient measurements, although the improvement is surprisingly small for compound (b). The superiority is clearer when the experimental conditions are varied more radically. Thus, examination of dicyclohexylcarbodi-imide (f) with a calcium fluoride prism gave $\varepsilon^{a}=1890$ (cf. NaCl , 1430) and A (method II) $=9.25$ (cf. $\mathrm{NaCl}, 8 \cdot 75$). Method 3 (variable correction) is the most satisfactory, as shown by the error values and also by the fact that the A values for different compounds are closer together than they are in methods 2 (proportional correction) and 4 (no correction). Of methods 2 and 4 the former gives slightly smaller errors and more correct A values.

It is unfortunate that the variable-correction procedure cannot be applied to overlapping bands such as occur in (h), (i), and (j). In these cases the proportional-correction method is still valid, although the choice of frequency limits for integration is arbitrary. The use of a range $40 \mathrm{~cm} .^{-1}$ above the higher, to $40 \mathrm{~cm} .^{-1}$ below the lower frequency band recommended by Jones et al. ${ }^{4}$ gives remarkably good results in the present examples. Attempts to resolve the bands graphically and determine separate areas led to far greater deviations from mean values. The ε^{a} values suggest that the band primarily associated with the stretching mode is at $c a .2145 \mathrm{~cm} .^{-1}$, while the $2100 \mathrm{~cm} .^{-1}$ component is the coupled vibration.

For general purposes the proportional-correction procedure is the most suitable, in that it has two advantages, viz., ease of calculation and applicability to overlapping bands, over the more refined methods involving varying corrections.

We are grateful to the Department of Scientific and Industrial Research for a grant (to R. J. M.), and to Miss W. Peadon for technical assistance.

The University, Manchester, 13.
[Received, July 23rd, 1956.]

[^0]: ${ }^{2}$ Ramsay, J. Amer. Chem. Soc., 1952, 74, 72.
 4 E.g., Jones, Ramsay, Keir, and Dobriner, ibid., p. 80; Bürer and Günthard, Helv. Chim. Acta, 1956, 39, 356.

